Reading Questions 5

- 1. The value of 4! is 20. F
- 2. If n is a positive integer then (n+1)! = n!(n+1).
- 3. The series $\sum_{n=1}^{\infty} \frac{1}{n!}$ diverges. \mathbf{F}
- Ratio Test 4. Which test was used in the example?

Section 9.4 Tests for Convergence (Part 3)

Ratio Test

Theorem: Ratio Test

P 1. Up until this section, the sequence a_n of a series has not contained a factorial. Hence if the sequence contains a factorial that might be an indication to use the Ratio Test.

Determine if the series $\sum_{n=1}^{\infty} \frac{2}{(n+4)!}$ converges or diverges.

P 2. Can the Ratio Test be used to determine if the series $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n}$ converges or diverges? **P** 3. Determine if the series $\sum_{n=1}^{\infty} \frac{6}{n+2^n}$ converges or diverges. Don't forget to first determine if $\lim_{n \to \infty} a_n = 0.$

Alternating Series

Theorem: Alternating Series Test

The series
$$\sum_{n=1}^{\infty} (-1)^{n-1} a_n$$
 converges if $0 < a_{n+1} < a_n$ and $\lim_{n \to \infty} a_n = 0$.

P 4. Determine if the series $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n}{n^2+1}$ converges or diverges. Be sure to state any test that you use.

P 5. Can the alternating series test be used to determine if the series $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n!}{n^3+2}$ converges or diverges? If so, state whether the series converges or diverges.

P 6. The alternating series test can be applied to $\sum_{n=1}^{\infty} (-1)^{n-1} a_n$ where $0 < a_{n+1} < a_n$ for all n and $\lim_{n \to \infty} a_n = 0$. Give an example of a sequence a_n where $0 < a_{n+1} < a_n$ for all n and $\lim_{n \to \infty} a_n \neq 0.$

geometric series
$$\sum \sum x^n$$

monotone and bounded $\sum \sum$
divergent test $\lim a_n \neq 0$
comparison fest $a_n \leq b_n$
p-series test $\sum \frac{1}{n^p}$
limit comparison test $\lim \frac{a_n}{b_n} = L > 0$
absolute value test $\sum |a_n|$

Ratio Test

Thm: Suppose
$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = L$$
 then $\sum_{n=1}^{\infty} a_n$

1, converges if
$$L < 1$$

2. is undetermined if $L = 1$, and
3. diverges otherwise

$$E_x a_n = 1, 1, 1, 1, 1, \dots \leq 1$$
 diverges

$$\lim \left|\frac{1}{1}\right| = 1$$
 The ratio test doesn't give any information,

Ex: Lonsider
$$2 \frac{1}{n!}$$
.

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(n+1)!}{(n+1)!} \right| = \lim_{n \to \infty} \left| \frac{n!}{(n+1)!} \right| = \lim_{n \to \infty} \left| \frac{n!}{(n+1)!!} \right|$$
$$= \lim_{n \to \infty} \left| \frac{1}{(n+1)!} \right| = O \times [$$

$$\lim_{n \to \infty} \left| \frac{1}{\frac{n+1}{n}} \left(= \lim_{n \to \infty} \left| \frac{n}{n+1} \right| = 1 \right|.$$

The ratio test is inconclusive.

Alternating Series
$$\underbrace{\xi(-1)}_{a_n}^{b_n} = b_n > 0$$

Thm: $\underline{Z}(-1)^{n-1}b_n$ converges if $0 < b_{n+1} < b_n$ and lim $b_n = 0$.

Ex: Consider
$$\underbrace{\pounds}_{n=1}^{00}$$
 $(-1)^{n-1}$ $\underbrace{1}_{n}$.

Note: the absolute value test fails.

$$a_{n} = (-1)^{n-1} \frac{1}{n} \qquad b_{n} = \frac{1}{n} \qquad b_{n+1} = \frac{1}{n+1}$$

$$\frac{1}{n+1} \leq \frac{1}{n} \qquad as \qquad n \leq n+1$$

 $\lim b_n = \lim \frac{1}{n} = 0$