## Section 9.4 Tests for Convergence (Part 2)

## Limit Comparison

Use finil Comparison Test to determine to serie 2 195 converges or diverges

Theorem: Limit Comparison Test

Suppose  $a_n > 0$  and  $b_n > 0$  for all n. If

$$\lim_{n \to \infty} \frac{a_n}{b_n} = c$$

 $\lim_{n\to\infty} \frac{\omega_n}{b_n} = c$ where c > 0 then the two series  $\sum_{n=1}^{\infty} a_n$  and  $\sum_{n=1}^{\infty} b_n$  both converge or both diverge.

**P** 1. Use the Limit Comparison Test to determine if the series  $\sum_{n=1}^{\infty} \frac{n+5}{n^2+4}$  converges or diverges. In general, you may use any test to determine if a series converges or diverges.

**P 2.** Use the Limit Comparison Test to determine if the series  $\sum_{n=1}^{\infty} \frac{n+2}{n^4+n+1}$  converges or diverges.

## Absolute Value Test

Theorem: Absolute Value Test

If  $\sum_{n=1}^{\infty} |a_n|$  converges, then so does  $\sum_{n=1}^{\infty} a_n$ .

**P** 3. Use the absolute value test to determine if the series  $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2+1}$  converges or diverges.

**P** 4. Determine if the series  $1 - \frac{1}{4} + \frac{1}{8} - \frac{1}{16} + \frac{1}{32} - \cdots$  converges or diverges.

**P** 5. Is the statement "If  $\sum_{n=1}^{\infty} a_n$  converges then  $\sum_{n=1}^{\infty} |a_n|$  converges" always true. Explain your answer.

**P 6.** Suppose  $|a_n| < ax^n$  where  $|a_i| < a$  and 0 < x < 1. Does the series  $\sum_{n=1}^{\infty} a_n$  converge or diverge?

9.4 part 2

Thm: Limit comparison Test  

$$a_n > 0$$
 and  $b_n > 0$  for all n. If  
 $\lim_{n \to \infty} \frac{a_n}{b_n} = c$  where c is a real number  
 $\lim_{n \to \infty} \frac{a_n}{b_n} = c$  where c is a real number  
and  $c > 0$   
then  $\xi a_n$  and  $\xi b_n$  both converges or they both diverge.

$$E_{x'}$$
 Determine if  $\sum_{n=1}^{\infty} \frac{n^2 - 5}{n^3 + n + 2}$  diverges or converges.

$$\lim_{n \to \infty} \frac{n^2 - 5}{n^3 + n + 2} = 0 = 7 \text{ we can't say the series diverges, yet',}$$

consider 
$$a_n = \frac{n^2 - 5}{n^3 + 1^2}$$
 and  $b_n = \frac{1}{n}$  as  $a_n$  and  $b_n$  behave

in the same way. So

$$\lim_{n \to \infty} \frac{n^{2} - 5}{n^{3} + n + 2} = \lim_{n \to \infty} \frac{n^{3} - 5n}{n^{3} + n + 2}$$

$$= \lim_{n \to \infty} \frac{n^{3} - 5n}{n^{3} + n + 2}$$

$$= \lim_{n \to \infty} \frac{n^{3} - 5n}{n^{3} + n^{3} + 2n^{3}}$$

$$= \lim_{n \to \infty} \frac{1 - 5n^{2}}{1 + 2n^{3}}$$

$$= \frac{1-0}{1+0+0} = 170$$

By the limit comparison test 
$$\sum a_n$$
 diverges since  $\sum \frac{1}{n}$  diverges (by the p-series test)

Ex: Determine if 
$$2\sin\frac{1}{n}$$
 converges or diverges.

$$\lim_{n \to \infty} \sin \frac{1}{n} = \sin(0) = 0 = 7^{1/2} \text{ inconclusive } 11$$



let 
$$a_n = \sin \frac{1}{n}$$
 and  $b_n = \frac{1}{n}$ .

Then  

$$\lim_{n \to \infty} \frac{\sin \frac{1}{n}}{1} = \lim_{n \to \infty} \frac{-\cos \frac{1}{n}}{n^{2}} = \lim_{n \to \infty} \cos \frac{1}{n}$$

$$= \lim_{n \to \infty} \cos \frac{1}{n}$$

$$= \cos 0 = 1 > 0$$

By the limit comparison test  $\Sigma \sin \frac{1}{n}$  diverges since  $\Xi \frac{1}{n}$  diverges.

Thm: If 
$$\xi |a_n|$$
 converges then  $\xi |a_n|$  converges.  
 $a_n$   
 $\frac{a_n}{* * * * *}$   
 $\frac{a_n}{* * * * *}$ 





since it is geometric.

By the absolute value test  $\frac{2}{3} \left( -\frac{1}{2} \right)^{n} = \frac{2}{3} \left( -1 \right)^{n} \left[ \left( \frac{1}{2} \right)^{n} \right]$   $= \frac{2}{5} 3 \left( \frac{1}{2} \right)^{n}.$ 

Since the series is geometric and  $\left|\frac{1}{2}\right| < 1$  it converges. By absolute value test  $\sum \left[3\left(-\frac{1}{2}\right)^{n}\right]$  converges so

Ex:  
let 
$$a_n = \frac{(-1)^n}{n^2}$$
,  
consider  $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} = \sum_{n=1}^{\infty} \frac{1}{n^2}$   
 $\sum_{n=1}^{\infty} \frac{1}{n^2} = \sum_{n=1}^{\infty} \frac{1}{n^2}$ 

=7 By absolute value test 
$$2 \frac{(-1)^n}{n^2}$$
 converges.