Reading Questions 4

ŕ

- 1. The comparison test is a test that can be used to determine if a series converges.
- 2. A *p*-series converges if p > 1 and diverges if $p \le 1$.
- 3. The limit comparison test requires the terms of the series to be positive.
- 4. Which test was used in the example?

Section 9.4 Tests for Convergence

Comparison Test

P 1. When choosing a test to determine if a series converges or diverges you should look for common patterns in the terms. Does the series $\sum_{n=1}^{\infty} \frac{20}{n^{20}}$ converge or diverge.

P 2. Is the sequence $\frac{n^2-5}{n^3+n+2}$ larger or smaller than the sequence $\frac{1}{n}$? Justify your answer by using inequalities?

P 3. When determining if a series converges or diverges be sure to state the test being used. Does the series $\sum_{n=1}^{\infty} \frac{n+2}{n^4+n+1}$ converge or diverge.

Limit Comparison

P 4. Use the Limit Comparison Test to determine if the series $\sum_{n=1}^{\infty} \frac{n+5}{n^2+4}$ converges or diverges. In general, you may use any test to determine if a series converges or diverges.

P 5. Use the Limit Comparison Test to determine if the series $\sum_{n=1}^{\infty} \frac{n+2}{n^4+n+1}$ converges or diverges.

Tests
geometric
$$\lim_{n \to \infty} S_n = \sum_{n=1}^{\infty} a_n x^n$$

monotone and bounded a is real
divergent $ixt < 1$
if $\lim_{n \to \infty} a_n \neq 0$ then $\sum_{n \to \infty} a_n x^n$
 $ixt < 1$
if $\lim_{n \to \infty} a_n \neq 0$ then $\sum_{n \to \infty} a_n x^n$
 $ixt < 1$
 $ixt < 1$
 $\lim_{n \to \infty} a_n \neq 0$ then $\sum_{n \to \infty} a_n diverges$
 $\lim_{n \to \infty} a_n = 0$
 $\sum_{n \to \infty} a_n = 0$
 $\lim_{n \to \infty} a_n + b_n = \lim_{n \to \infty} a_n + \lim_{n \to \infty} b_n$
 $\sum_{n \to \infty} x + b_n = \lim_{n \to \infty} a_n + \lim_{n \to \infty} b_n$
 $\sum_{n \to \infty} x + b_n = \lim_{n \to \infty} a_n + \lim_{n \to \infty} b_n$

 $\begin{array}{c|c} \left[\frac{P2}{n} \right]_{n} \frac{n^{3}-5}{n^{2}-5} & \frac{2}{n} & \frac{1}{n} \left(\frac{4}{(n^{2}+n+2)} \right) \\ & \frac{n(n^{2}-n)}{(n^{2}+n+2)} & \frac{n^{2}+n-2}{n^{2}(n^{2}+n-2)} \\ & \frac{n(n^{2}-n)}{n^{2}-5} & \frac{n^{2}+n+2}{n^{2}-1} \\ & \frac{n(n^{2}+n+2)}{n(n^{2}+n+2)} & \frac{n^{2}+n+2}{n(n^{2}+n+2)} \\ & \frac{n(n^{2}+n+2)}{n^{2}-5} & \frac{n^{2}+n^{2}+n+2}{n(n^{2}+n+2)} \\ & \frac{n(n^{2}+n+2)}{n^{2}-5} & \frac{n^{2}-5}{n^{2}-5} \\ & \frac{n(n^{2}-n+2)}{n^{2}-5} & \frac{n^{2}-1}{n^{2}-5} \\ & \frac{n(n^{2}-n+2)}{n^{2}-5} & \frac{n(n^{2}-n+2)}{n^{2}-5} \\ & \frac{n(n$

T

Τ

:- Earth, diverges

Thm:
$$\sum \frac{1}{n^p}$$
 converges if $p > 1$ and diverges if $p \le 1$.
EX: $\sum \frac{1}{n^3}$ converges by the p-series test
Let $0 \le a_n \le b_n$. We know $\le a_n$ and $\ge b_n$ are
monotone. Also $\le a_n \le \ge b_n$. So if $\ge b_n = \bot$ then
 $\ge a_n$ is monotone and bounded, $\therefore \ge a_n$ converges.

Ex: Let $a_n = \frac{1}{n^3 + 1}$. Then $b_n = \frac{1}{h^3}$. We know $\sum b_n$ converges by the p-series test. $0 \le a_n$ $n^3 = \frac{1}{n^3 + 1} \stackrel{?}{\le} \frac{1}{n^3} n^3 = 7 \frac{n^{3+1}}{n^3 + 1} \stackrel{n^3}{\le} 1 \stackrel{n^3+1}{=} n^3 \le n^3 + 1$ $n^3 \le n^3 + 1$ $0 \le 1$ $\sqrt{-3}$ $0 \le a_n \le b_n$.

$$\underbrace{E_{X:}}_{\text{Let}} \quad \text{Let} \quad b_n = \frac{20}{\sqrt{n+1}}, \quad \text{Then} \quad 0 \leq \frac{20}{\sqrt{n}} \leq b_n$$

Note
$$\frac{20}{\sqrt{n}} = \frac{20}{n}$$
. By the persences test $\leq \frac{1}{n}$ diverges
since $1 \leq 1$. Hence $20 \leq \frac{1}{n} = \leq \frac{20}{n}$ and $\leq \frac{20}{n}$

diverges. Also
$$\frac{20}{n} \le \frac{20}{1n^2 + 1}$$

=? $\sqrt{n^2 + 1} \le n$
=? $\sqrt{n^2 + 1}^2 \le n^2$
=? $\sqrt{n^2 + 1}^2 \le n^2$
=? $n + 2\sqrt{n^2 + 1} \le n^2$

By the previous than 2 m+1 diverges.