Office hours MW 3pm - 4pm R 1:30pm - 2:30pm

مط کم apt. Reading Questions 2

- 1. If a sequence has a limit then the sequence converges.
- 2. As n goes to infinity the sequence $s_n = \frac{1}{n^p}$ converges to 0 for all p. **F**
- 3. What is the limit of the function e^{-n} as n goes to infinity? \mathbf{O}

T

Monotone Sequences

P 1. One technique for showing that a sequence does not converge is by showing that the sequence is not bounded. State whether the sequence $s_n = cos(n)$ for $n \ge 1$ is bounded above or below. From your answer can you conclude that the sequence does not converge?

P 2. Determine if the sequences are monotone increasing or decreasing.

1.
$$s_n = \frac{1}{n^2}$$
 for $n \ge 1$
2. $b_n = (\frac{1}{3})^n$ for $n \ge 1$
 $s_{n+1} \land s_n$
 $(n+1)^2 \land (\frac{1}{n^2})$

Geometric Series

P 3. It is not always obvious that a series is a geometric series. Write the series $5 - 10 + 20 - 40 + 80 + \cdots$ in the form $a + ax + ax^2 + ax^3 + \cdots$.

Theorem

The sum of the infinite geometric series

$$S = a + ax + ax^2 + \cdots$$

is $\frac{a}{1-x}$ if |x| < 1.

- **P** 4. If $S = a + ax + ax^2 + ax^3 + \cdots$ is a infinite geometric series which is equal to 8 can a = 1?
- **P 5.** Determine the sum of the series

$$S = 2 + 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \cdots$$

Def: kiven sn $Iim S_n = L : the limit of S_n$ E<u>x:</u> Consider 1, 12, 13, 14, ... $S_n = \frac{1}{n}$ $n \ge 1$ $\lim_{n \to \infty} S_n = 0$ $\frac{Def:}{s_n} \quad s_n \quad converges \quad if \quad \lim_{n \to \infty} s_n = L \quad exists.$ Sn diverges otherwise. Ex: consider $s_n = \frac{1}{n^2}$ for $n \ge 1$, $\frac{1}{n^2}$ behaves like $\frac{1}{n}$ $\lim_{n \to \infty} \frac{1}{n} = 0 = 7 \quad \lim_{n \to \infty} \frac{1}{n^2} = 0$ Sn=n² diverges as n-700 Ex: Ex: Determine if $s_n = \frac{1-e^{-n}}{1+e^{-n}}$ converges or diverges. $\lim_{n \to \infty} \frac{1 - e^{-n}}{1 + e^{-n}} = \lim_{l \to \infty} \frac{\lim_{n \to \infty} 1 - \lim_{n \to \infty} e^{-n}}{\lim_{n \to \infty} 1 + \lim_{n \to \infty} e^{-n}} = \frac{1 - 0}{1 + 0} = 1$

.: Sn converges to 1

$$Def$$
: S_n is bounded below if there exists K such that
 $K \leq S_n$ for all n .
 S_n is bounded above if there exists M such that
 $S_n \leq M$ for all n .
 S_n bounded if it is bounded below and above.

$$E_{x}$$
: $\frac{1}{n}$ is bounded below by 0^L.

$$E_{x}$$
: $S_n = 1 + (-1)^n$ for $n \ge 1$ is bounded,
 S_n is bounded below by O

$$\frac{Def:}{s_n} \quad s_n \quad \text{is monotone increasing if } s_n < s_{n+1} \quad \text{for all } n,$$

$$s_n \quad \text{is monotone decreasing if } s_{n+1} < s_n \quad \text{for all } n,$$

$$s_n \quad \text{is monotone if it is monotone increasing or decreasing}$$

$$E_{x}$$
:
 $S_n = \frac{1}{N}, n \ge 1$ S_n is decreasing

